SHELL PROGRAM INTERFACE

WordPerfect Corporation

Version 1.0
February, 1986

SHELL PROGRAM INTERFACE -- TECHNICAL SPECIFICATION
This specification contains the information necessary to write progr
interact with WordPerfect's Shell program manager. The following su
the information contained in each chapter of this document.

Chapter 1 -- Introduction to the Shell

This chapter introduces the Shell program manager in general, it's c
and the benefits to be gained by writing programs that interact dire

Shell.

Chapter 2 -- Writing programs that interact with the Shell
This chapter gives some basic guidelines for writing programs that i
the Shell. It contains the general steps necessary for a program to
the Shell.

Chapter 3 -- Testing for the presence of the Shell

This chapter describes the method that programs should use to determ
Shell is present in the system. An example procedure (in assembly 1
given to illustrate the method.

Chapter 4 -- Shell Functions
This chapter details each of the available Shell functions, and give
parameters, results, possible error codes, and examples in assembly
each.

Chapter 5 -- User Interface guidelines and suggestions

This chapter gives some basic guidelines on implementing the Shell i
that the user will be able to take advantage of all of the Shell's c

Appendix

A - File Formats for the Clipboard
B - Memory Considerations

CHAPTER 1 -- INTRODUCTION TO THE SHELL

The Shell is a program manager/integrator developed by WordPerfect C
to help integrate WordPerfect, MathPlan, and other programs.

The Shell provides the user with a program menu from which programs,
commands, batch files, and utilities can be executed. The user can
menu to include whatever programs he or she wishes.

The user can load several programs into memory concurrently, and swi
between those programs at will under the Shell. The Shell also prov
"clipboard", or buffer, for moving data (text, numbers, graphs, etc.
between programs.

Included with the Shell in the WordPerfect Library package are sever
utility programs, such as a calculator, a calendar, a notebook, a DO
manager, and others -- all of which can cut and paste information to
the clipboard.

A program that can interact directly with the Shell can take advanta
following features and capabilities:

1. Suspend operation and transfer control to the Shell manage
allows the user to load other programs concurrently and sw
and forth between programs with the press of a key. For e
the user is able to pop into any of the desktop utilities
calendar, notebook, etc.) that are included with the Shell

2. Write or append ASCII text to the Shell's clipboard. This
user to easily move data from one program to another.

3. Retrieve a copy of text in the Shell's clipboard.

4. Take of advantage of Expanded Memory, if available. If th

an Intel AboveBoard (c), or other Expanded Memory board th
the Lotus/Intel/Microsoft Specification, the Shell will au
swap programs out to the the expanded memory above 640K.
allows the user to load up many more programs at once than
normally fit in 640K of conventional memory.

All programs, even those that do not interact directly with the Shel
advantage of the following Shell features and capabilities:

1. Start the program from the Shell menu with the press of a
user can specify which directory to make the new default d
before starting the program. Command line arguments can a
specified for each program on the Shell menu. The user ca
create sub-menus for organizing their hard disk and progra
logical groupings.

Use the Shell keyboard macro facility. This allows the us
a series of keystrokes and assign them to either an ALT-SH
combination or to a filename on disk. The keystrokes that
recorded can be played back from any program. There is no
(except disk space) to the number or length of Shell macro
be created.

Execute DOS commands, batch files, or Shell utilities from
menu.

CHAPTER 2 -- WRITING PROGRAMS THAT INTERACT WITH
THE SHELL

In order for a program to interact directly with the Shell, it must
following basic steps:

1. Test to see whether or not the Shell is present in the sys
method for doing this is described in detail in Chapter 3.

2. If the Shell is present, use Function 50h to request a uni
ID code. This code is then used in subsequent function ca
Shell.

3. Release any memory that is not needed. The program should

determine what memory it needs for data, buffers, etc., an
any extra memory using DOS function 4Ah.

When DOS loads a program into memory, all available memory
assigned to that program. In order for the Shell to be ab
other programs concurrently into memory, programs that int
the Shell must release extra memory by "shrinking" down wi
function 4Ah. This should be done as soon as the program
that it has been loaded under the Shell.

Most WordPerfect programs use less memory for buffers, etc
loaded under the Shell than they do when loaded normally f
This makes it possible to load several program concurrentl

Shell.
4. Use Shell Function 57h to determine if the Shell is loadin
program as part of a "start-up" procedure. If so, the pro

do any initialization, then transfer control back to the S
Function 50h) before modifying the screen or asking for an
input.

5. Check user input where applicable for the "Shell" key (Ctr
use the Shell functions to interact with the Shell (i.e.,
temporarily, write or append data to the clipboard, get da
clipboard, etc.)

6. Before terminating, the program should issue Function 55h
permission to exit) so that the Shell can insure that all
in the reverse order that they were loaded into memory. T

necessary for DOS to operate properly.

Chapters 3 and 4 describe how to test for the Shell and make functio
the Shell.

CHAPTER 3
This
test
test

1.

Example

The f

--— TESTING FOR THE PRESENCE OF THE SHELL

chapter describes how to use the DOS "get interrupt vector" tec
whether or not the Shell is present. Any program can use these
for the presence of the Shell.

Use the DOS "get interrupt vector" command (DOS function 35h) t
contents of interrupt vector number 1Ah (addresses 0000:0068 th
0000:006B) .

The Shell uses this interrupt vector to perform all interaction
application programs and the Shell manager. The OFFSET of the

service routine address is stored in the word located at addres
the SEGMENT address is stored in the word located at address 00

Compare the contents of an ASCII string which starts at the add
specified by the contents of the interrupt vector 1Ah plus a fi
2 bytes to the string "SHELLOO1".

If the result of the string comparison is positive, the Shell i
can be called via interrupt 1Ah.

ollowing code is an example of the technique described above to

if the Shell is present.

o kk kK

Ne Ne Ne Ne Ne We we N

o kk kK

~

R i 2 g dh Sb 2b b b b 2 dh Sh S b b b b i S S SR S dh b b b b i S Sh 2 db Ib b b b b b i S 2 S IR db Ib b b b b b S 4

The following procedure determines whether or not the Shell
is present in the system.

RESULT: CARRY FLAG is SET if the Shell is present
CARRY FLAG is CLEAR if the Shell is not present

R i i 2 S dh Sb b b b b 2 dh Sb Sh b b b b i S S 2 S dh b b b b i b Sh dh db Ib b b b b b S 2 S dh dh Ib b b b b S S 4

Test_For_Shell PROC NEAR

PUSH AX

PUSH BX

PUSH CX

PUSH ST

PUSH DI

PUSH DS

PUSH ES

PUSH CS

POP DS ; prepare DS for string compare
MOV AH, 35h

MOV AL, 1Ah ; 1lssue "get interrupt vector"

INT 21h

MOV DI, BX

ADD DI,?2

MOV SI,OFFSET ascii_name

MOV CX, 8

CLD

REPE CMPSB

JNE Test_No
Test_Yes:

STC

JMP Test_Exit
Test_No:

CLC
Test Exit:

POP ES

POP DS

POP DI

POP ST

POP CX

POP BX

POP AX

RET

ascii _name: DB "SHELLOO1"

Test_For_Shell ENDP

CHAPTER 4 -- SHELL FUNCTIONS

All interaction with the Shell manager is performed by issuing inter
The contents of the registers before and after issuing the interrupt
depending on the Shell function being called. The function number i
passed in register AH. For all functions except Function 50h (Get P
the program ID code is passed in register AL.

For all functions, register AH returns an error status code. The po
status codes are listed for each function. In general, if AH is zer
executed normally. If AH is non-zero, an error of some kind occurre

For all functions, if AH is OFFh on return, an invalid Function code
passed in AH.

For each function, the input parameters, results, possible error cod
example in assembly language are given.

Function 50h -- Get Program ID

This function is used to return a unique program ID code to the call
should be the first function used by the calling program, and should
soon as the program determines that the Shell is present.

For all subsequent function calls, the program ID code should be pas
register AL.

IN: AH contains the function number (50h)

OUT: AL contains the Program ID code
AH contains an error code

EXAMPLE:

MOV AH, 50h

INT 1Ah

OR AH, AH

JNZ error_handler

ERROR CODES:

AH =0 No error.
AH =1 No Program ID code available.

Function 51h --

Go to Shell

This function is used to temporarily suspend the calling program and
control to the Shell manager. The Shell menu will be displayed and
allowed to select from among the entries on the menu.

When the user elects to return to the calling program, the Shell tra
control back to the caller by returning from the interrupt.

It is very important that the calling program check the error status
on return from this interrupt. The user may have elected to exit al
that are loaded under the Shell, in which case the caller will need
shop" and terminate.

IN:

OUT:

AH contains the function number (51h)
AL contains the Program ID (returned by Function 50h)

AH contains an error code

EXAMPLE:

MOV
MOV
INT
OR
Jz
DEC
Jz
DEC
Jz
DEC
Jz

ERROR CODES:

Note:

AH =
AH =

AH =

AH =

AH, 51
AL, pr
1Ah
AH, AH
conti
AH
unabl
AH

h
ogram_1ID

nue_with_program

e_to_transfer_to_shell

exit_program

AH

exit_program_but_save_info_first

= O

No error, continue with program.

Unable to transfer control to Shell -- continue
program or issue error message.

User wishes to exit all programs that are loaded
Shell. Close up files, etc., and terminate.
User wishes to save any information (documents,
etc.) that has been modified, and then exit all
are loaded under the Shell. Save any updated in
(this may require user interaction), and termina

When this function is called, the Shell saves the following in
about the caller's "

state”" on the caller's stack:

1. ALL registers except AX
2. All flags
3. The current cursor position and mode

10

4. The current DOS DTA address

5. The following interrupt vectors:
- Divide overflow
- Critical error handler

The above "state" is restored before the Shell returns control to th
If AH contains a 2 or 3 (terminate) code on return from this functio

calling program should still issue Function 55h (Request permission
before actually terminating.

11

Function 52h -- Write Data to Clipboard

Use this function to write the data specified by DS:SI and CX regist
clipboard. Any previous information contained in the clipboard is 1
Function 53h to append or add data to the clipboard.

The clipboard is virtual in nature, so if the data is too large for
buffer reserved for the clipboard, a temporary file will automatical
on disk, and the additional information will be stored there.

IN: AH contains the function number (52h)
AL contains the Program ID code
BL contains a format type code as follows:
1 = data is in WP text format
2 = data is in WP Merge File format
3 = data is in ASCII text format
(see Appendix for explanation of format codes)

CX contains the number of bytes to write
Note: Calling programs should write or append no more
bytes at a time to the clipboard. The amount of data
be stored in the clipboard is limited only by disk sp
maximum "chunk" that the Shell can handle per call is
DS:SI contains the segment and offset of the location in m
where the data to be written is stored.

OUT: AH contains an error code
EXAMPLE:

MOV AH,52h

MOV AL, program_ID

MOV BL, format_type

MOV CX,number_of_ bytes

MOV SI,offset_of data ; DS is segment of data
INT 1Ah

OR AH, AH

JNZ error_handler

ERROR CODES:

AH =0 No error.
AH =1 No room to add data to clipboard (Disk Full erro
AH = 2 Invalid format type.

12

Function 53h -- Append Data to Clipboard

This function is similar to Function 52h, but appends the data to th
clipboard.

IN: AH contains the function number (53h)
AL contains the Program ID code
BL contains a format type code as follows:
1 = data is in WP text format
2 = data is in WP Merge File format
3 = data is in ASCII text format
(see Appendix for explanation of format codes)

CX contains the number of bytes to write
No more than 5K bytes at a time (see note under Funct
- Write to Clipboard)
DS:SI contains the segment and offset of the location in m
where the data to be appended is stored.

OUT: AH contains an error code
EXAMPLE:

MOV AH, 53h

MOV AL, program_ID

MOV BL, format_type

MOV CX,number_of_ bytes

MOV SI,offset_of_ data ; DS is segment of data
INT 1Ah

OR AH, AH

JNZ error_handler

ERROR CODES:

AH =0 No error.
AH =1 No room to add data to clipboard (Disk Full erro
AH = 2 Invalid format type.

13

Function 54h -- Retrieve Data from Clipboard

Use this function to retrieve data from the clipboard.

The number o

returned in CX. The calling program should continue making this fun
until CX equals 0, meaning there is no more data to be retrieved fro
the clipboard is empty.

clipboard. If CX is zero on the first call,

Function 56h can be used to determine whether the data in the clipbo

text format (WP or ASCII) or in a mail-merge format

IN: AH contains the function number (54h).

AL contains the Program ID code.

BL contains a format type code as follows:
1 = request data in WP text format

= request data in WP Merge File format

2
3 = request data in ASCII text format
(see Appendix for explanation of format codes)

OUT: AH contains an error code

CX contains number bytes of data returned

(WP Merge File).

(0 = empty)

Note: The Shell will hand back approximately 128 byte
The program should continue calling Function 54h unti
ES:DI contains the segment and offset of the buffer where

located.
EXAMPLE:

Read_clipboard:
MOV AH, 54h
MOV AL, program_ID
MOV BL, format_type
INT 1Ah
OR AH,AH
JNZ error_handler
JCXZ no_more_data

; PROCESS CX BYTES AT ES:DI

JMP Read_clipboard
no_more_data:

ERROR CODES:

AH = 0 No error.
AH =1 Disk I/0O error —-- can't retrieve data
AH = 2 Invalid format type request (i.e.,

requested dat

Merge File format when data in clipboard was WP

ASCIT text)

14

Function 55h -- Request Permission to Exit

Because the Shell uses DOS to load programs and manage memory, PpProgr
be exited in the reverse order that they were loaded into memory. T
that a program request permission from the Shell just prior to termi
Shell will return control to the program when it is time to exit.

IN: AH contains the function number (55h)
AL contains the Program ID code

OUT: AH contains an error code
EXAMPLE:

MOV AH, 55h

MOV AL, program_ID

INT 1Ah

OR AH, AH

JNZ go_ahead_and_terminate
JMP restart_program

ERROR CODES:

AH =0 Restart program -- user wishes to re-enter progr
AH <> 0 Go ahead and terminate program.

Note: The calling program should use DOS function 4Ch to terminate.

15

Function 56h -- Check Clipboard Format
Use this function to return a format type code indicating what type
currently in the clipboard (text or mail merge format).

IN: AH contains the function number (56h)
AL contains the Program ID code

OUT: AH contains the format type code:

0 = data is text (WP or ASCII)

1 = data is mail-merge format (WP Merge)
EXAMPLE :

MOV AH, 56h
MOV AL, program_ID
INT 1Ah

ERROR CODES:

No errors are defined for this function

16

Function 57h -- Check if Shell is installing program resident

This function should be issued by the calling program after it has r
program ID code, and after it has released any extra memory, but bef
modifies the screen or does any user interaction.

If the function returns a 1 in AL, the user wants to load this progr
memory as he (she) is starting the Shell, but does not wish to begin
program until they select it from the Shell menu. If this is the ca
program should go ahead and complete any initialization required, an
Function 1 to transfer control to the Shell manager.

IN: AH contains the function number (57h)
AL contains the Program ID code

OUT: AH contains an error code
AL = 1 if program should transfer control to Shell immedia
starting.

EXAMPLE:

MOV AH,57h

MOV AL, program_ID
INT 1Ah

OR AH, AH

JNZ error_handler
OR AL, AL

JZ continue_with_program

MOV AH,51h ; transfer to Shell
MOV AL, program_ID

INT 1Ah

OR AH,AH

JZ continue_with_program

DEC AH

JZ continue_with_program

DEC AH

JAE exit_program
continue_with_program:
ERROR CODES:

AH =0 No error
AH = 1 Invalid program ID code

17

Function 58h -- Test if Shell is using Expanded Memory

This function allows programs to determine whether or not the Shell

Expanded Memory. If so, the programs do not need to release memory
they start, but can take as much or all of the 640K conventional mem
wish.
IN: AH contains the function number (58h)
OUT: AL contains 1 if Expanded Memory is being used.
EXAMPLE:

MOV AH, 58h

INT 1Ah

OR AL,AL

JZ no_expanded_memory

JMP can_use_all_conventional_memory
ERROR CODES:

No errors are defined for this function

18

CHAPTER 5 -- USER INTERFACE GUIDELINES AND
SUGGESTIONS

All programs (to date) that interact with the Shell use Ctrl-Fl as t
key. We highly recommend that all programs that interact with the S
Ctrl-Fl1 to go to the Shell, interact with the clipboard, etc.

One of the features of the Shell is the capability for the user to s
programs by pressing an ALT-SHIFT-letter key combination. This feat
implemented as a Shell macro, and assumes that the normal procedure

the Shell consists of pressing Ctrl-F1 and then 1. For this reason,
recommend that a menu be displayed when the user presses Ctrl-F1l, wh
first option is Go to Shell. This will allow the user to use the "s
method of switching to and from your program.

We suggest that programs which intend to support the Shell directly

through the Shell User's Manual (particulary the Program Profiles in
Appendix) to get a feel for how WordPerfect programs interact with t

19

APPENDIX

A. File Formats

Information can be passed to and retrieved from the clipboard in one
following formats:

1. WP Text -- WordPerfect Text format. Data in this format con
characters interspersed with WordPerfect function codes. WordP
function codes range from 128 to 255 decimal. "Extended charac
would normally occupy this range are preceeded and followed by

"gate" -- the function code OElh. Newlines are indicated by a

linefeed (0Ah). Only programs which are familiar with WordPerf
function codes should attempt to read or write to the clipboard
format.

2. WP Merge File -- WordPerfect mail-merge format. This is the
WP Text (text interspersed with WP function codes), but the tex
formatted into a field & record orientation. A "R and linfeed
each field and a "E and linefeed (0Ah) follow each record. Thi
should only be used by programs which are able to strip out Wor
function codes.

3. ASCII Text -- ASCII Text format. Data in this format consis
normal ASCII text. Newlines are represented by a carriage retu
(ODh) /linefeed (0Ah) combination. Codes above 128 are assumed
extended characters (foreign, line-drawing characters, etc.) T
and should be used by all programs which need to communicate wi
clipboard, but do not wish to worry about WordPerfect function

20

B. Memory Considerations

As explained in Chapter 2, programs which interact with the Shell ne
release any memory that they do not need when they start. Many prog
normally take all available memory. In this case, the program shoul
exception when being loaded under the Shell, take a reasonble amount
(or allow the user to specify how much to use) and release the rest
other Shell programs.

The Shell itself takes about 25K of memory.

The Shell supports the Lotus/Intel/Microsoft Expanded Memory Specifi
The Shell will automatically sense if Expanded Memory is availabe an
programs out to Expanded Memory when necessary. When the Shell is r
Expanded Memory, each program can use all or as much of the 640K
conventional memory as it desires. When programs are not currently
they are swapped out to Expanded Memory by the Shell.

21

